
 1

To create a video Q&A website in order to
help potential clients find a professional
they vibe with

Richard Evans-Lacey
MSc Computer Science project report

Department of Computer Science and Information Systems, Birkbeck College, University of
London

2022

This report is substantially the result of my own work, expressed in my own words, except
where explicitly indicated in the text. I have read and understood the sections on plagiarism
in the Programme Handbook and the College web site. I give my permission for it to be
submitted to the JISC Plagiarism Detection Service.
The report may be freely copied and distributed provided the source is explicitly
acknowledged.

 2

Table of contents
TABLE OF CONTENTS .. 2
ABSTRACT ... 3
INTRODUCTION ... 4
SYSTEM DESIGN .. 5

CHANNELS .. 5
USERS .. 5
CHOICE OF STACK ... 5
HIGH LEVEL STRUCTURE ... 6
PAGE STRUCTURE .. 7
RELATIONAL DATABASE MODEL ... 7
FILE STRUCTURE ... 8
WORKSPACE SETUP ... 9

PAGE DESIGN ... 11
NAVIGATION ... 11
WELCOME ... 12
BROWSE VIDEOS .. 16
BROWSE PROFILES ... 18
ASK A QUESTION ... 19
USER SIGN-UP .. 20
FAVOURITES .. 22
PROVIDER CONTACT .. 22
PROVIDER SIGN-UP .. 24
RECORD VIDEOS INTRO ... 26
RECORD VIDEOS .. 26
MANAGE VIDEOS ... 30

PAGE IMPLEMENTATION ... 31
NAVIGATION ... 31
WELCOME ... 32
BROWSE VIDEOS .. 34
BROWSE PROFILES ... 35
ASK A QUESTION ... 35
USER SIGN-UP .. 35
FAVOURITES .. 37
PROVIDER CONTACT .. 37
PROVIDER SIGN-UP .. 37
RECORD VIDEOS INTRO ... 40
RECORD VIDEOS .. 40
MANAGE VIDEOS ... 43

TESTING ... 44
UNIT TESTING .. 44
INTEGRATION & USER TESTING ... 44

REFLECTIONS .. 48
BIBLIOGRAPHY ... 49
APPENDICES ... 53

APPENDIX 1: USER ACCEPTANCE TESTING MEETING NOTES .. 53

 3

Abstract
The objective of this project is to create a website that helps potential clients find a provider
of professional services who they vibe with. It is based on the idea that video content helps
potential clients make better ‘like’ decisions by conveying non-verbal information about the
provider.
To explore this idea, I created a website based around short video answers to questions on the
theme of mental health. These answers are intended to help inform the user and also to help
them get to know providers who they could work with personally.

Users browse through a list of video answers to questions that interest them, like the answers
and providers they are drawn to, check out their profiles, and contact them through the site.

The video content is created by the providers on the site. When they are ready to record, the
site asks the provider a randomly chosen question, gives them 3 seconds to consider their
answer, then starts capturing video using their computer's built-in camera. After a maximum
of 60 seconds the recording stops and it is available for them to review. If they are satisfied
with their attempt they can choose to add it to their library, the site uploads it to storage in the
cloud, and it is available for potential clients to watch.

Supervisor: Vladislav Ryzhikov

 4

Introduction
The objective of this project is to create a website that helps potential clients find a provider
of professional services who they vibe with. The project was fully introduced in the project
proposal submitted earlier this year (Evans-Lacey, 2022). That document explained the
challenges involved in finding a professional services provider who a user feels comfortable
with and confident in. It proposed that a website utilising spontaneously recorded video
content would help facilitate this decision-making process.
The website created in this project is appropriate for multiple channels but I have initially
focussed on mental health as this is an area where finding a good match is particularly
important to the outcome of the interaction. I have experience in this context as I have
chosen a therapist using existing web-based listing sites. I am a psychotherapist myself so I
am familiar with the issue from both sides.

The objective of this project is to create a website that:

• Displays video answers to frequently asked questions,
• Guides users and providers though a simple sign-up process,
• Enables users to save their favourite providers,
• Enables users to contact their favourite providers,
• Enables providers to record spontaneous video answers and automatically saves these

files to the cloud.

In this report I:

• Outline the design of the system,
• Explain the functionality of each page,
• Describe how I went about implementing each page,
• Describe the testing undertaken and the actions arising from this testing,
• And deliver some reflections on how the project went, what I have learned, and how I

will apply this in future.

 5

System design
Channels
The video answers are categorised into "channels" of people who provide:

• Domestic support: cleaners, babysitters, drain cleaners;
• Education: tutors of various kinds;
• Home improvement: builders, electricians, carpenters, architects;
• Legal support: solicitors, barristers;
• Mental health: psychotherapists, coaches, counsellors; and
• Physical health: physiotherapists, dietitians, massage therapists.

As previously mentioned, this project focusses on the mental health channel but is designed
to be extensible to the other channels.

Users
The site has a hierarchy of users who have progressively more permissions.

Casual viewers Signed-in users Signed-in providers Administrators

Can view video
answers in all
channels
Can browse profile
summaries
Can ask questions

As for a casual
viewer plus:

Can like video
answers and
providers
Can contact
providers
Can manage their
own details

As for a signed-in
user plus:

Associated with a
single channel

Can create video
answers

Can manage their
profile and video
answers

Can add and remove
questions

Can add and remove
users and providers

A note on "Providers" vs "Posters"
I have grappled with what to call the different kinds of users on the site. I was originally
thinking "questioner" and "answerer" but that is a mouthful. Then I thought around "video
watcher" and "video poster". Latterly I have been calling the people recording the videos
"providers" (of services) as user testing indicated that this was a more natural word than
"poster". Subsequently I have changed to "provider" across the user interface of the site. In
the code and the more technical parts of this report, you will see many mentions of "posters".
I hope you will now understand that the words "poster" and "provider" are interchangeable.

Choice of stack
In my project proposal (Evans-Lacey, 2022) I outlined 2 alternative tech stacks: MongoDB,
Express.js, React.js, Node.js (MERN) and Linus, Apache HTTP Server, MySQL, PHP
(LAMP). Coming into the project my attitude was bullish: I would use this as an opportunity
to learn and implement my website using what I considered to be the modern approach:
MERN.

 6

During the first two weeks of the project I immersed myself into learning Node.js, Express.js,
and react.js. For Node.js and Express.js I studied an 8 hour YouTube course from
FreeCodeCamp (Smilga, 2021), for React I studied their 10 hour course (Smilga, 2020).
While the courses were excellent they were took me longer than I expected to work through.

In the third week I reflected on my progress and assessed that it would take another 2 weeks
of building case studies (Smilga, 2021) before I would be ready to start creating my own
content. Even then there was a risk that I may become stuck with the new technology. I
considered 2 options: either find significant external support and continue down the MERN
route, or use the LAMP stack. I chose the latter.
The third week was devoted to reacquainting myself with HTML, CSS, JS, MySql, PHP,
(Traversy, 2022) and the formatting library Bootstrap (Bootstrap, n.d.), all languages that I
have only a little previous experience of, and that I haven't touched for 2 years.

High level structure

The website pages are created with PHP. Some of the HTML files created by the PHP are
heavily controlled by JavaScript files which control what the user sees on the screen. Behind
the scenes there are various worker files, especially those interacting with the database.
Formatting and some other features are handled by external libraries, and the video files and
thumbnails are all saved into the cloud.

 7

Page structure

Most of the pages in the site utilise shared components to reduce replicated code. The
particular main page will "include" a common header and footer. The header includes a
functions file and a head file. The head file contains all the links to formatting cascading
style sheets (CSS) from the Bootstrap and font libraries and a site specific CSS file that can
be used if any overriding is required. A number of pages include extra PHP worker files to
execute certain actions such as saving to or retrieving from the database. The pages that
record and play the videos utilise page specific JavaScript files to control their operation
when loaded.

Relational database model

 8

The database model is built in MySQL. Every user has a single entry in the "users" table
containing a minimal amount of contact information and a hashed password for logging-in.
Each channel (e.g. Mental Health) has a number of question categories associated with it (e.g.
about the provider) in the "categories" table. Each category has a number of questions
associated with it (e.g. "How did you become interested in mental health") stored in the
"questions" table. Each question has a number of answers by different providers associated
with it. These answers are in video and thumbnail form and are stored in a Google Cloud
Storage bucket. Links to these files are in the "answers" table. Each user may have a number
of liked (or disliked) providers or videos. These are stored in the "fav_" tables. Each user
may be a provider of services in none, one, or many channels. Each of their provider profiles
are stored in the "posters" table. Each provider / poster may have none, one, or many
specialisms. A list of the specialisms is stored in the "specialisms" table and these are linked
to the providers in the "poster_specialisms" table. Each poster will have many video answers
but may have chosen to hide certain questions rather than answering them. These hidden
questions are stored in the "hidden_questions" table.

File structure
The following table gives a summary of the functionality of each of the files:

Folder File Function

css Bootstrap and site-
specific CSS files

Formatting

images Various image and
video files

Site branding and introductory video content

includes db-inc.php Connects to the database

 functions-inc.php Various shared functions esp to access the database

 login-inc.php Checks login information and sets session variables

 logout-inc.php Unsets session variables

 save-fav-answer-
inc.php & save-fav-
poster-inc.php

Save changes in favourite status

 save-hidden-
question-inc.php

Saves a question a provider does not want to answer

 save-video-file-inc
(local).php & save-
video-file-inc.php

Saves video files either locally or to Google Cloud
Platform

 signup-poster-1-
inc.php & signup-
user-inc.php

Validates signup information and saves it to the
database

js myScript.js Shared JavaScript including setting the formatting of
the menu bars

 player.js Page specific JavaScript to play videos, save
favourites, and manage the video list

 9

Folder File Function

 recorder.js Page specific JavaScript to control the asking of
questions and the capture of videos and thumbnails

love Various google
client secrets

Accessing online services

uploads Various .mp4 and
.png files

The folder I used when I was saving files locally

vendor Various library files
including Google

Local code required to run various libraries

root .gitignore Folders not to be uploaded to GitHub: love, uploads,
and vendor

 composer.json &
composer.lock

Locks the dependencies of the project to a known
state

 One .php file for
each of the web
pages

Contains the main PHP and HTML for each of the
web pages

Workspace setup

I chose Visual Studio Code (VS Code) (Visual Studio Code, n.d.) as my Integrated
Development Environment (IDE) as this was the IDE used in the Cloud Computing module
of the MSc. To develop using the LAMP stack I needed a local Apache server with PHP and
MySql. To facilitate this I installed a web development solution called MAMP (MAMP,
n.d.).

In order to have the results of my code dynamically appear in my browser when I saved it in
the IDE I installed the following extensions: Live Server (Dey, n.d.), PHP Server (brapifra,
n.d.), and PHP Intelephense (Mewburn, n.d.) in addition to the Live Server extension for the
Chrome browser (Dey, n.d.).

 10

In order to see PHP errors I set "display_errors = On" in the MAMP PHP configuration
initialisation file php.ini (kn000x, 2014).

All development work was completed using a Google Chrome browser with developer tools.

 11

Page design
Navigation
Channel tabs (logged-out)
When logged out as a user:

The channel navigation is common across the site and allows users to sign-in, log-out or
access the different categories quickly.

Channel tabs (logged-in and signed-up as a provider)
When logged in as a user:

When the user is logged in the left hand side of the channel tabs welcomes them back and
gives them the option to log-out.

Navigation bar (logged-out)

The navigation bar is common across all pages within a channel (but not the welcome page).
On the left we have channel specific branding (in this case mental health) which, when
clicked, brings the user back to the "Browse videos" page. When logged-out the link options
are limited to browsing videos, browsing profiles, and asking questions.

Navigation bar (logged-in and signed-up as a provider)

When logged-in as a provider the user is able to record and manage video content.

Responsiveness

Many users will want to use the site on a
mobile device. If they did this with the
standard layout many of the features would
become very difficult to use. (The Medium
Well, n.d.)

The menu is responsive such that the screen
is narrow then the menu collapses into a
"burger bun" which reveals a list of menu
items when clicked.

 12

Footer

The footer is common across the pages though its colour changes accordingly. In addition to
the current social media links, it could hold links to less often parts of the site such as legal
small-print.

Welcome

 13

The welcome page is intended to introduce users to the site and guide them quickly into
useful content. It consists of a branded banner, an iconic summary of the process, a video
introduction, and some video thumbnails.

Branded banner

I needed a brand that was general enough to sit across channels, relevant to the "finding via
video" nature of the site, and had an available URL. "ViewChoose.com" seemed to fit the
bill.
The eyeball graphic design is intended to emphasise the "watching videos" nature of the site
and also to introduce a friendly personality to an otherwise potentially dry activity.
"ViewChoose" sounds somewhat like "YouTube" and the red colour and font style are
playful nods towards YouTube's logo (Logos-World, 2017):

 14

Iconic summary + video introduction

The intention of this section is to introduce the viewer to the concept of the site. The logos
used here are repeated on the "Browse videos" page of the site.

Video thumbnails

The intention of adding the video thumbnails is to give the viewer an idea of the wide variety
of information that is available across the site. In this example the different hats represent
different providers. Note that all the outlines are light blue as this is the logo colour for
mental health providers. In a site with multiple channels each video would be outlined by
that channel's logo colour.

 15

Responsiveness

When this page (and all the others that
follow) are viewed on a narrow device such
as a mobile phone the screen elements
automatically change from being displayed
next to each other to being displayed
stacked on top of each other.

 16

Browse videos

The play videos page is the centre of the website. It enables a view to watch video answers
to questions that interest them. There are three main parts of this page: the filters, the watch
screen, and the video queue.

Filters

 17

The filters allow the user to restrict the videos shown according to keywords in the video
title, video categories, the particular specialism of the provider, and whether the provider
provides online or in-person consultations.
The keyword filter restricts the videos shown to those with titles (the questions the provider is
answering) containing the keyword chosen. In the event that more than one word is input
then only the first is searched for.

The dropdown menus allow the user to search for questions that fall within a certain category
and for providers who have a particular specialism.

The online-consultations tick-box allows users to choose to only watch videos from providers
who they can then book an online session with.

The in-person consultations tick allows users to choose to only watch videos from providers
within a certain radius of a location chosen by the user.

Watch screen

The watch screen is where the videos from the queue are played. At the top is the question
that the provider is answering. The main screen has standard play / pause control, a volume
button, a full-screen button, and options to download the video or go picture in picture.
Under the screen are buttons for skipping backwards and forwards in the queue, disliking or
liking the video or the provider, and a link to the provider's profile and contact page.

 18

Video queue
The video queue is a random selection of videos that have been filtered according to the
viewer's wishes that is loaded into the page every time it is refreshed.
In the event that the user dislikes a video or a provider then that video stays in the queue until
the page is refreshed, then the particular video or provider is excluded from showing up in
any further searches.

Browse profiles

The browse profiles page gives the user an alternative search experience more akin to a
standard listing site. It consists of filters and a list of provider profile pictures and summary
information (excluding any providers that are on the user's "dislike" list).

The "Contact me" button takes the user to the provider's profile page. The "Watch my
videos" button takes the user to the "Browse videos" screen which is then populated with a
queue of videos from this provider.

 19

Ask a question

If the user has a suggestion for a question that should be included in a channel or a message
for the managers of the site this is where they can communicate it. Once received the
questions will be manually considered prior to inclusion to ensure that there are no existing
close alternatives and that they are correctly phrased.

 20

User sign-up

The sign-up form is pretty self-explanatory. To ensure it the form is correctly filled in all the
fields have full error checking.

 21

 22

Favourites

If the user is signed-in then any favourite providers or video answers may be re-accessed via
this page. Clicking on a favourite provider takes the user to the provider's contact page.
Clicking on a favourite video takes the user to watch the video on the "Browse videos" page.

Provider contact

 23

The provider contact page is in three parts: their profile information, a contact form, and a
library of their videos.

The profile information summarises the provider's qualifications, how they practice, and an
indicative fee. If the provider practices in-person then it also provides a map of their
location.
The contact form is pre-populated with the signed-in user's name and email address. The
freeform text box suggests a message format without requiring the user to use that format. It
has a maximum message length of 1000 characters which are dynamically tracked. When the
message is sent the message box is replaced by the confirmation "This message has been
sent":

The library contains all the videos from this particular provider. When the user clicks on a
video they are taken to the "Browse videos" with a queue of videos exclusively from this
provider:

 24

Provider sign-up

 25

If a user wants to record videos, they need to become a provider. This is the form they use to
sign-up. It has full error checking and a number of other features:

• People often have a separate work email address for different line of work so this
form gives the user the option of adding an email that is different to their user sign-up
form.

• The user can choose one or more specialisms.
• The qualifications and memberships page is limited to a fixed number of characters

and features a dynamic character count so the user knows how many characters they
have left.

 26

• Different providers will charge in different ways. One may charge £60 for a 50-
minute session, another may charge £500 for a block of 6 with the 7th one for free. In
order to give users an easily comparable guideline the form dynamically calculates an
indicative hourly rate for each provider.

• When a provider chooses the "in-person consultations" option, the form opens up a
Google map section. The user is invited to enter their address and the site finds it on a
map of the world. The latitude and longitude of the location is stored in the database
for proximity calculations.

Record videos intro

Prior to recording the provider will need to get themselves ready. This page provides
motivation for embarking on the recording process (which may be stressful for some) and
provides some tips on how to make good quality videos.
The provider can choose between answering randomly chosen questions from across all the
categories or narrowing it down to a few. When they are ready to record they press the "I'm
ready, let's go!" button and are taken to the "Record videos" page.

Record videos
Accessing the camera and microphone

The first time a user records a video they are asked for permission to access their camera and
microphone. From then on, the page goes into automatic recording mode. It has three states:
before recording, during recording, and after recording.

 27

Before recording

The provider is asked a question at random from a question "pool". They have 3 seconds to
make a choice: If they don't like the question they can choose to hide it, they will never see
the question again and the page asks them another question. If they don't want to answer the
question right now, they can press the "Answer later" button, the question will be returned to
the question pool, and the page asks them another question. If they feel like having a go at
answering the question, they simply wait for the 3-2-1 countdown to end and the page starts
recording.

 28

During recording

The page shows it is recording by turning the border of the preview box red. Above the
preview box is count-up (less stressful than a count-down) timer, above that the question
continues to be displayed. The provider records their answer. To warn them that they are
coming to the end of the 60 seconds maximum time the border around the preview flashes
red and black. At 60 seconds the recording is automatically stopped. If the provider finishes
their answer before then they can press the "I'm done" button to stop recording.

 29

After recording

When recording the video is available for the provider to watch back. The provider has
another choice to make: to discard the video or to save it. If they wish to discard the video
then the question is moved back into the pool. If they save then a record of the answer is
saved in the database and the video and a thumbnail files are saved to the cloud. The video is
immediately available in the main site and on the provider's profile. If they would prefer to
choose a different thumbnail they can pause the video preview at any point and that is the
screenshot that is used.

 30

Manage videos

From time to time the provider may wish to review their video library. This page contains a
list of videos and details of how many times they have been viewed and liked. If the provider
wishes to delete a video and return the question to the question pool they can do that here. If
they would like to clip some code to insert the video into their own website then they can do
that here too.

 31

Page implementation
Navigation
This consists of login options and two sets of navigation: the channel tabs and the channel
specific menus.

Login / logout / sign-up
Session variables are variables that are stored in the server for the duration of a user's visit to
the site regardless of the web page that the user is on. The state of the login area is
determined by checking for a session variable "id_user" that indicates if there is a user logged
in, and "#.id_poster" (where # is a number) that indicates if that user is a provider on channel
#.
The user logs in by entering data into a form. When submitted this form sends that data to a
file called "login-inc.php". The functionality of this page includes code to check the
password that has been entered correctly. For security reasons I only store encrypted
passwords in the database so I use an inbuilt PHP function called password_verify() that
compares the hashed password that has been saved in the database using the function
password_hash(). (php, n.d.), (Krossing, 2018):

$passwordCheck = password_verify($password, $row['password']);

If the password is correct this page sets a number of session variables that identify the user
and are used elsewhere in the site. If the user chooses to log-out at any time all of these
session variables are unset and the session itself is destroyed by the file "logout-inc.php"
(com, n.d.):

session_unset();
session_destroy();

Channel tabs
The channel tabs are created utilising the "nav-tabs" bootstrap class on an unordered list of
items (Bootstrap, n.d.):

<ul id="menuTabs" class="nav nav-tabs ml-auto">
 <li class="nav-item"><a id="tab0" class="nav-link"
href="index.php">Welcome
 <li class="nav-item"><a class="nav-link disabled"
href="">Domestic support

To set the tab that the user is currently on it must be "active". This is done in the myScript.js
page based on the channel variable set on the "header.php" page:

 32

switch (channel) {
 case 1:

document.getElementById('tab0').classList.remove('active');
 document.getElementById('tab1').classList.add('active');

Navigation bar
The navigation bar is not shown on the index page, only the channel pages. The channel can
be set by calling any page with an appropriate id_channel GET variable in the URL, for
example "videos-play.php?id_channel=1". The header file checks for this GET variable, sets
it as a session variable, and also as a JavaScript variable so that the navigation can be
appropriately formatted:

if (isset($_GET['id_channel'])) {
 $_SESSION['id_channel'] = $_GET['id_channel'];
}
echo "<SCRIPT> var channel = " . $_SESSION['id_channel'] .
"</SCRIPT>";

Depending upon the "id_user" and "#.id_poster" session variables, appropriate levels of menu
options are displayed.

Responsiveness
When the screen is narrow then a "burger bun" button is shown and the content in the
"navbarToggler" div is displayed within a drop-down menu. The code to do this makes use
of the Bootstrap collapse plugin (Bootstrap, n.d.):

<button class="navbar-toggler" type="button" data-bs-
toggle="collapse" data-bs-target="#navbarToggler" aria-
controls="navbarToggler" aria-expanded="false" aria-
label="Toggle navigation">

</button>
<div class="collapse navbar-collapse" id="navbarToggler">

Footer
The colour of the footer is also changed by the function in "myScript.js". The social media
icons are sourced from a library called "font awesome" (Font Awesome, n.d.) and accessed
using simple code:

<i class="fab fa-facebook-square fa-2x"></i>

Welcome
The welcome page is "index.php", the default landing page. I call this page channel 0 for the
purposes of formatting the tabs and the footer.

 33

This is a relatively simple page that displays some introductory videos and some thumbnail
videos. To display the thumbnails it queries the database with the function "fetch_answers()"
then loops over the answers creating HTML code for each answer. The filenames of the
thumbnails are stored in the database and the thumbnails are stored in a Google Cloud
Platform bucket called "viewchoose". The images are simple to access by setting the image
source to a filepath concatenated with the filename:

$file_path = "https://storage.googleapis.com/viewchoose/";
<img class="img-fluid" src=<?php echo $file_path .
$answer["thumb_filename"]?> alt=" A thumbnail picture for the
answer video
">

fetch_answers()
This function returns an array of answer data from the database and is used on multiple
pages. It pulls together data from multiple tables and filters it according to multiple
parameters:

function fetch_answers($id_channel = "all", $like = '',
$id_category = 'all', $online = 'all', $id_answer = "all",
$id_poster = "all", $fav_answer = "all", $fav_poster = "all",
$limit = 96)

This function returns all the answers in the database according to the following Structured
Query Language (SQL) query:

$sql = "SELECT * FROM questions AS q, answers AS a, users AS
u, categories AS c, posters AS p WHERE q.id_question =
a.fk_question AND u.id_user = p.fk_user AND u.id_user =
a.fk_user AND q.fk_category = c.id_category $id_channel
$id_category $online $id_answer $id_poster $like $fav_answer
$fav_poster ORDER BY RAND() LIMIT $limit";

Notice that the query contains the parameters listed in the function, however, with the
exception of $limit, the parameter defaults won't actually work within the query. There is an
intermediate step where each parameter is transformed into an appropriate line of SQL. For
example, to filter for only the answers from a given channel the intermediate code is:

if ($id_channel == "all") {
 $id_channel = "";
} else {
 $id_channel = "AND q.fk_channel =" . $id_channel;
}

If the channel is set to the default "all" then no extra SQL is inserted into the query, however,
if the channel is set to a number then the query only returns answers where the fk_channel
column of the question table is equal to that channel number.

 34

The most complex part of this intermediate code is the part that filters according to whether
the signed-in user has or hasn't set the particular answer as a favourite. For example, if we
only want answers from posters who have been selected as a favourite ($fav_poster == 1)
then the SQL code to be inserted needs to check if the id of that poster appears IN the
"fav_answers" table of the database for that user. It achieves this by using a nested SELECT
statement:

$fav_poster = "AND a.id_poster IN (SELECT fa.fk_poster FROM
fav_posters AS fp WHERE fp.fk_user = " . $_SESSION['id_user']
. " AND fp.fav_poster = " . $fav_poster . ")";

Responsiveness
I made my design responsive by utilising Bootstrap's "grid" system (Bootstrap, n.d.). The
code to do this has a "container" division that contains "row" divisions. Each row contains
12 units of width and can be divided into columns containing units of width that total to 12.
In the following case the column is one of 4 across the row:

<div class="container">
 <div class="row">
 <div class="col-3">

Browse videos
The HTML code for the watching videos is located in "videos-play.php" which is controlled
by "player.js". The page is divided into the filters, the watch screen, and the video queue.

Filters
The filters are a set of controls on a form that the user can select from that restrict the set of
answers that are pulled into the queue. When the form is submitted the "videos-play.php"
page is re-loaded with the selections passed into itself as GET variables.

Watch screen & Queue
Every time the videos-play.php page is loaded it fetches an array of answers using the
function "fetch_answers()" with parameters set according to the GET variables passed in to
the page by the filters. If the user is logged in then the page also loads that user's favourite
information from the database. In order to access this information in the "player.js" file I
encode it into JavaScript Object Notation (JSON) (CodexWorld, 2017):

<script>
 var answers = <?php echo json_encode($answers);?>;
</script>

The player.js file dynamically updates the title and source of the main "vidPlayer" <video>
tag, and also the titles and thumbnails of the items in the queue. The video content is
streamed directly from Google Cloud Platform. The first video to play is the video at
vidIndex = 0 in the queue with the queued thumbnails offset from there. When one video has
finished there is a brief pause and the video and queue are reloaded (this time from an

 35

incremented vidIndex =1). In the event that a user has requested a particular video to play
first then the answer information for that video is pushed to the front of the queue prior to the
first video being played.

Like / dislike buttons
Coding video and answer likes / dislikes proved to be rather involved. The user's like /
dislike information is loaded when the page loads but then changes as soon as the user hits
any of the thumbs up or thumbs down buttons. When these buttons are pressed the player.js
file runs the function saveFavPoster() or saveFavAnswer() which, in turn ,calls the included
php files "save-fav-poster-inc.php" or "save-fav-answer-inc.php" to actually write / update /
delete the new "like" information to the database.
The problem comes when we want to have accurate button up / button down behaviour on
each video in the queue as the database is now out of sync with the data that was downloaded
when the page was originally loaded. For example, let's assume I have no favourite providers
but then watch a great video by Dave and press the thumbs-up button. As I continue to watch
more videos I see another video by Dave but the like button won't show as pressed as I hadn't
liked him at the time the page was loaded. Very confusing for a user!
I resolved this issue by creating a temporary array of favourites in the "player.js" file and
basing the button up / button down behaviour on that. Now when the user presses "like" it
not only updates the database but also updates this temporary table.

Browse profiles
This page is to do due to time constraints and will utilise database calls and presentation
similar to that in the profile page.

Ask a question
This page is in the "contact.php" file. It consists of a form to gather data and a function to
send that data as an email.

There is some validation on the form itself which I will cover in more detail when I consider
the sign-up pages.

This page uses an inbuilt PHP function called mail() (php, n.d.) to send out an email with a
descriptive title that the receiver (in this case our ViewChoose inbox) can reply to:

$subject = "ViewChoose contact from: ".$fromName;
$headers = "from: ".$fromEmail."\r\n";
mail($toEmail, $subject, $message, $headers);

User sign-up
The user sign-up page is designed to validate data prior to saving to the database. When the
user submits the form, the data is set to the "signup-user-inc.php" page for checking. The
already entered data and any errors are sent back to the user sign-up page so the user can
correct them easily.

The form data is sent to the included page by POST variables. As soon as the variables arrive
they are cleansed using the function "cleanseInput()" that trims any spaces from the

 36

beginning and end of the input, strips out any back slashes, and prevents the browser from
reading any HTML tags such as "<script>".

function cleanseInput($data) {
 $data = trim($data);
 $data = stripslashes($data);
 $data = htmlspecialchars($data);
 return $data;
}

To ensure the user only uses letters, spaces, and dashes in their first and second names we use
a regular expression match:

preg_match("/^[a-zA-Z'\-]*$/",$sname);

Persisting data and providing error messages
Any errors and the existing data that the user has entered are appended to the "signup-
user.php" header as GET variables (I don't send back the password!) (Krossing, 2018). I
found this method a bit messy and decided to use session variables instead for the poster
sign-up form.
When data has been sent back to the form it is re-populated into the input box "value" using
PHP to echo the appropriate value. The class attribute contains the Bootstrap formatting
"form-control" and also a designator "is-invalid" which is echoed by the PHP code if there is
an error variable associated with the input:

<input type="text" class="form-control <?php echo $errUid ?
'is-invalid' : '';?>" name="uid" placeholder="User ID"
value="<?php echo $uid;?>">

The division containing the error message is a sibling to the input and contains the Bootstrap
class "invalid-feedback". As a default this division is hidden, however, if the 'is-invalid' class
is set on the input it is set to visible:

<div class="invalid-feedback">
 <?php echo $errUid;?>
</div>

If there is an error with the user id then the $errUid error message is displayed in a nicely
formatted box:

 37

Securing the inputs from SQL injection attack
SQL injection attack is where a hacker uses forms to insert malicious SQL code that pulls
extra data out of the database or corrupts it in some way (Wikipedia, n.d.). I counteracted
this by preparing the SQL statement first and then binding parameters to it (W3 Schools,
n.d.):

mysqli_stmt_prepare($stmt, $sql);
mysqli_stmt_bind_param($stmt, "ssssss", $username, $fname,
$sname, $email, $hashedPassword, $emailListBoolian);

Favourites
This page uses similar code to the "Browse videos" page in terms of obtaining a filtered list
of answers, displaying them, and updating the user's favourites if they want to remove an
item.

Provider contact
This page presents all the information associated with a given provider. The map code is
similar to that in the "Provider sign-up" page that I will introduce in the next section. The
contact form code is similar to that in the "Ask a question" page. The code to display the
video library is similar to that on the "Welcome" page. A difference here is that when a
video is clicked it sends the provider id along with the answer id to the "Browse videos" page
so it only shows videos recorded by this provider.

Provider sign-up
A single user can be a provider in multiple channels, each with its own email address,
specialisms, etc. To accommodate for later extension on this page I have used session
variables which are currently preceded with a hard coded "1" but could be encoded with the
channel number of the current channel.

Much of the code on this page is similar to the user sign-up page, however, on this page I
decided to use session variables rather than GET variables to persist the data and pass back
any form errors. I found this to be easier to keep track of.
On the form I experimented with a number of validation techniques:

Specialities: check boxes
I created code that pulls the current list of specialities for the particular channel into an array
and then looped over that array to create the tick boxes. When the provider chooses a tick
box the form creates an array of selections (Agarwal, 2020). This array gets saved into a
session variable in order to persist these values on a part-completed form.

Qualifications and memberships: character counter
Rather than trying to maintain a list of potential qualifications I decided this should be a
freeform field and that it should be constrained in some way to prevent the poster from
writing too much. To help the poster know how much is too much I included a maximum
number of characters and a countdown to show how many they have remaining.

 38

I identified the text area "qualText" and the countdown field "qualCount" in the document
and wrote some JavaScript to watch for changes in the text and to update the value of the
count:

var maxChar = 1000;
qualCount.innerHTML = maxChar;
qualText.addEventListener("keyup", function(){
 var char = qualText.value.length;
 qualCount.innerHTML = maxChar - char;
});

Rate: calculated input
The form asks the provider to give an indicative hourly rate. As some providers may have
sessions that last for more or less than an hour, I created a function that takes the amount in
pounds and the time in minutes calculates the hourly rate for them:

updateRate = () => {
 rateInt = (pounds.value / (mins.value / 60)).toFixed(0);
 rateInfo.innerHTML = rateInt;
 rateOutput.value = rateInt;
}

Physical location: obtain coordinates using google maps geolocation
Users will want to search for providers who are local to them. One solution I considered was
to ask providers to list a number of large towns / local areas that they serve. This probably
would have worked OK but relies on both provider and client having the same idea of what
constitutes "near", and also relies on places being spelled correctly. A neater solution was to
utilise Google's maps platform (Google, n.d.).
In order to keep the form looking as clean as possible I started with a check-box to show or
hide the location bits of the form. The code initialises a map using my Google maps API key
and the callback function "load":

<script
src="https://maps.googleapis.com/maps/api/js?key=MyAPIKey&call
back=load">
</script>

The load function sets some default options for the map location and zoom level, or, if we
already have coordinates for the practice, uses them instead. It writes the map into the
"mapDiv" using these "mapOptions":

var map = new google.maps.Map(mapDiv, mapOptions);

 39

The map has a box that invites the applicant to enter their address or postcode. This is used
to "geocode" their location: to obtain latitude and longitude coordinates and also to plot it on
the map. This is achieved by using Google's geocode API (Google, n.d.):

var geocoder = new google.maps.Geocoder();

When the applicant enters their address into the address input field and clicks the "find
location" button it calls the geocoder's geocode function using the value of the address input
field as the input. If the geocoding is successful ("OK") then the call-back function sets the
new centre and zoom level of the map, adds a marker, and updates the value of the two
hidden input fields for latitude and longitude. It is the values of these hidden input fields that
the form finally submits.

geocoder.geocode(
 {
 address: address,
 },
 function (results, status) {
 if (status === 'OK') {
 var location = results[0].geometry.location;
 map.setCenter(location);
 map.setZoom(14);
 new google.maps.Marker({
 map: map,
 position: location,
 });
 document.getElementById('1.latitude').value =
location.lat();
 document.getElementById('1.longitude').value =
location.lng();
 } else {
 alert('Geocode was not successful for the following
reason: ' + status);
 }
 }
);

Profile picture uploading
It was my original intention to invite providers to upload a profile picture to be used as a
thumbnail for all their videos. In order to have a consistent look I wanted to be able to
control the dimensions of this picture, and also to have the facility for the provider to crop it
before it was saved. To achieve this, I explored using a plug-in called "Croppie" (Croppie,
n.d.). I grappled with this plug-in for some time but could only get it to partially work so I
abandoned my profile photo idea in favour of using thumbnails captured from the videos
themselves. On reflection I prefer this solution as it gives the user a more honest idea of what
a video is likely to contain.

 40

Record videos intro
In addition to giving the provider information this page allows them to choose the categories
of questions that they wish to answer. These will be passed to "videos-record.php" using
GET variables.

Record videos
The video recording process is the most complex part of the site. Every time the main page is
refreshed it pulls a single question at random from the database. The page is then controlled
by a dedicated JavaScript file "recorder.js" which dynamically changes the screen elements
the provider sees in each phase of recording. When the provider wishes to save a particular
video and thumbnail the JavaScript calls "save-video-file-inc.php" which has the code that
pushes it to a bucket in Google Cloud Platform.

Accessing the camera and microphone
The first thing the JavaScript file does is to access the provider's microphone and camera
using the MediaCapture and Streams API (Griffith, 2018):

const constraints = { video: true, audio: true };
const mediaStreamObj = await
navigator.mediaDevices.getUserMedia(constraints);
const vidPreview = document.querySelector('video#vidLive');
vidPreview.srcObject = mediaStreamObj;

Before recording
Every time the "videos-record.php" page is refreshed it fetches a random question to ask the
provider. This question needs to be one from the appropriate channel, that they haven't
hidden, and they haven't already answered.

The SQL statement to do this is somewhat complex as we need to that the question does NOT
EXIST in the "hidden_questions" table:

$sql = "SELECT * FROM questions WHERE questions.fk_channel = "
. $id_channel . " AND NOT EXISTS (

 SELECT fk_question FROM hidden_questions WHERE
questions.id_question = hidden_questions.fk_question AND
fk_user =" . $_SESSION['id_user'] .

") AND NOT EXISTS (

 SELECT fk_question FROM answers WHERE questions.id_question
= answers.fk_question AND fk_user = " . $_SESSION['id_user'] .

")

ORDER BY RAND() LIMIT 1";

 41

When the question has been fetched it is displayed to the provider. They only see buttons
relevant to choosing whether to answer that question as the JavaScript file sets the other
screen elements so they are not displayed, for example:

btnRecNextQ.style.display = "inline";
btnRecStop.style.display = "none";

If the provider doesn't like the question and presses the "Hide" button the JavaScript sends an
instruction to "save-hidden-question-inc.php" using an XMLHttpRequest (W3 Schools, n.d.):

var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function () {
 if (this.readyState == 4 && this.status == 200) {
 location.reload(true);
 }
};
xhr.open('POST', 'includes/save-hidden-question-inc.php');
xhr.send();

The "save-hidden-question-inc.php" file saves the question id to the "hidden_questions" table
in the database so they will never be asked it again. The "Answer later" button simply
reloads the page. If the provider does not press a button the JavaScript runs a countdown
timer before calling the "startRecording()" function.

During recording
The JavaScript creates a "mediaRecorder" object and an array to hold the data captured from
the camera when data becomes available (Dutton, 2016):

let mediaRecorder = new MediaRecorder(mediaStreamObj);
let chunks = [];
mediaRecorder.ondataavailable = function (ev) {
 chunks.push(ev.data);
};
mediaRecorder.start();

During recording the JavaScript updates the screen with a count-up and flashes the border
when there are just a few seconds to go. When the provider decides they are done (or runs
out of time) the code stops the recording.

After recording
When the video recorder stops the code takes the chunks of video information from the array,
and puts it into a binary large object (BLOB). Then it updates the source of the <video> tag
to point to this blob so the provider can review their recording:

mediaRecorder.onstop = (ev) => {
 let blob = new Blob(chunks, { type: 'video/mp4;' });
 chunks = [];
 let videoURL = window.URL.createObjectURL(blob);
 vidReview.src = videoURL;

 42

If the provider likes the video and chooses to save it then the code captures a thumbnail from
the video (West, 2017) then sends it, along with the blob, to the "save-video-file-inc.php"
page using another XMLHttpRequest.

The "save-video-file-inc.php" page performs two functions: it saves the files, and updates the
"answers" table on the database.

Local storage
In my first implementation I saved the files locally. To save the video I needed to extract it
from the global "$_FILES" variable, extract it from the automatically created key called
"tmp_name", then save it with the appropriate filename:

$vid_file = $_FILES['videofile'];
$vid_blob = file_get_contents($vid_file['tmp_name']);
file_put_contents($vid_file_path, $vid_blob);

Saving the thumbnail had its own complexity. I needed to explode the comma delimited file
into an array, decode the second element of that array, then save it with the appropriate
filename (Newdevzone, 2022):

$thumb_file = $_POST['thumbnail'];
$thumb_file_array = explode(',', $thumb_file);
$thumb_string = base64_decode($thumb_file_array[1]);
file_put_contents($thumb_file_path, $thumb_string);

Cloud storage
My second implementation was to save the files to Google Cloud Platform. This proved to
be rather challenging to set up as I needed to download PHP to my computer, update the
version of PHP that I was running in MAMP, and update the version of Composer that I was
using before I could even download the google/cloud-storage component (the very first line
in the instructions) (Google Cloud Client Library, n.d.).

To access cloud storage, I needed to set up and download a JSON access token which I then
proceeded to share with the world when I uploaded it to my public GitHub repository(!).
After cancelling this token, I was careful to save the next one to a folder that was ignored by
Git.

In the code I first needed to link to the access token (learnWebCoding, 2020), autoload the
libraries installed by composer, then import the Google Cloud client library:

putenv("GOOGLE_APPLICATION_CREDENTIALS=/Applications/MAMP/htdo
cs/ViewChoose/love/viewchoose-7d1ca3d99c67.json");
require __DIR__ . '/../vendor/autoload.php';
use Google\Cloud\Storage\StorageClient;

I created a bucket called "viewchoose" and copied the "upload_object()" function from the
documentation (Google Cloud, n.d.). Once I had all this working, sending the files to the
cloud was actually easier than saving them locally:

 43

upload_object($bucket_name, $vid_filename,
$vid_file['tmp_name']);
upload_object($bucket_name, $thumb_filename,
$_POST['thumbnail']);

Manage videos
In the event that a provider wants to delete a video this page will call an included PHP file
that deletes the video and thumbnail from the cloud (Google Cloud, n.d.) and also from the
database.

 44

Testing
In the course of the project, I performed three types of testing: unit testing, integration
testing, and user testing.

Unit testing
When creating a new piece of code my strategy is always to start off as simple as possible
and then to add complexity. For example, if a button is to call a particular function, I will
start by having the function create and alert box so that I can be sure that the event listener is
working on the button before I write anything else. In addition to alert boxes I make much
use of "console.log()" functions to print the values of variables to the console. When
programming in PHP I will often echo the values of variables onto the screen.
Where possible I will feed a function with test cases so I can check the outputs. When I can't
access the inputs of the function directly I will recreate scenarios in the user interface and
then check that the function is doing what I'm expecting, for example, that a function to save
data to the database is actually doing just that.
For new areas of learning I will start by creating a sandbox page that is as close as possible to
the examples given in the online documentation. Once I've got the sandbox to work, I have
one foot on the ground and I can start integrating the functionality into the main code. A
good example of this was when I was learning how to save to the cloud: I followed the
documentation and a YouTube video until I finally got a simple example to work. When I
transferred that functionality into my own code I was baffled when it stopped everything else
from working. I was able to delete line by line until I found the problem line and (eventually)
realised that I was now running the code from within a folder and so this needed to be
reflected in the path I was using to access the library.

The most difficult aspect of unit testing was trying to debug PHP code in an included PHP
file, for example when "player.js" sends changes to a user's favourites to "save-fav-poster-
inc.php" for saving to the database. I couldn't find a good way to monitor what was
happening inside the PHP file: I couldn't work out how to output variable values to the
console, echo them to a page (as the included file is not shown on screen), nor return them to
the calling page. To work around this, I created a session variable and put my variable values
and error messages into that. I echoed that session variable out on the page that called the
function and, when I refreshed the page, was able to see what was happening within the
included function. I hope and assume there is an easier way that I haven't yet found.

Integration & user testing
In addition to talking to many people casually about the project I conducted 5 formal
interviews with potential users of the site. In order to test the site from end to end I invited
each interviewee to interact with the site as if they were looking for a therapist and then as if
they were a provider who wanted to post videos to the site.
I was aware that there was a risk that interviewees would tell me what they thought I wanted
to hear. To counteract that I invited each interviewee to be as critical as possible, thanked
them whenever an error arose, provided as little guidance as possible during the testing
process, and used "clean" questioning techniques (Wikipedia, n.d.) to get them to explore and
expand upon their perceptions.

 45

This end-to-end testing proved to be very useful as I was able to identify many technical
issues as we worked through the various pages of the site. I was also able to gain multiple
perspectives on the branding and general concept of the site which have been invaluable in
deciding how to take the project forward.

My notes from these meetings are in Appendix 1. The following table shows the actions
taken as a result:

Interviewee Action Status

JL Fix the screen when the poster has completed all the questions. DONE

JL Add "Languages spoken" to provider profile.

DT Remove the menu bar from the index page to make it less
confusing and to ensure users choose a channel.

DONE

DT Make index page banner smaller so it is less overwhelming. DONE

DT Re-phrase the "become a poster" menu item to "post videos" and
take people to the user sign-up page if they are not yet signed in.

DONE

DT Make the main video smaller so that the buttons are visible. DONE

VP Experiment with tabs instead of having an index page for choosing
channel.

DONE

VP Put pauses between videos. DONE

VP If there are no videos in the search ensure that there are no ugly
video placeholders in the queue.

DONE

VP Add tooltips to the video playback buttons. DONE

VP Change "answer questions" to "record videos". DONE

VP Make preview video when recording smaller. DONE

VP Add total likes to the videos when watching.

VP Fix the issue that caused "Tommy" not to show. DONE

VP Fix the email contact so that it sends to the poster email and not to
me.

DONE

TP Fix unsigned-in profile button issue. DONE

TP & AS Stop auto-playing videos when you first access the page.

TP Add tabs to the top of the page for channels. DONE

AS Change user interface to reference "Providers". DONE

AS Fix sign-in page login error. DONE

AS Change categories to "Show me videos about ..." DONE

AS Change position and words on the profile button.

AS Include profile information to the right of playing video.

 46

Interviewee Action Status

AS Include a "Welcome back" message with the logged-in person's
name in the menu bar.

DONE

AS Add profile picture to top of profile page. DONE

AS Make map smaller on profile page. DONE

AS Fix the gap under the map. DONE

AS Re-word profile contact form. DONE

AS Make contact form disappear once message is sent. DONE

In addition to the improvement actions identified in the user testing interviews I have
identified the following further improvements:

Page / file Possible improvement

Navigation Include an option for managing the user-profile.

Include password recovery.

Browse
videos

Refine keyword search to associate words, e.g. Anxious and Anxiety.

Add more filters.
Get clear on nomenclature: am I working with likes / dislikes or favourites?

There is currently a lot of repeated code to save to the two favourite tables.
Explore the possibility of re-factoring into a single function.

Browse
profiles

Add code snippet functionality.

Ask a
question

Add validation to the input fields.

User sign-
up

Create sign-up confirmation email.

Refactor so it uses session variables rather than GET variables for error
messages and persisting data.

Resolve issue of mental health navigation bar appearing when signing up
from the welcome page.

Gather location information for use in proximity searches.
Enable the same page to be used for updating user information.

Favourites Expand to allow the user to manage providers and videos that have been
disliked.

Access shared functions for updating database.

Provider
sign-up

Enable the same page to be used for updating user information.

Make multi-channel.

 47

Record
videos intro

Send category information to the "Record videos" page.

Record
videos

Add error handling for accessing the camera and microphone.

Record videos in a format which is readable in Safari and Firefox browsers.
Filter questions according to desired categories.

 48

Reflections
As I had already built a prototype for my project proposal, I had a clear idea of what I wanted
to achieve and I felt well prepared to start this project.
Thinking I could learn a new technology stack was clearly over-optimistic but I was able to
identify this early enough to change tack and start getting some useful work done. That said,
I'm still curious about building this in a MERN stack and will likely look into this after this
report has been submitted.
The technical side was predictably challenging - especially the video recording and saving.
Accessing data and moving it from PHP to JavaScript, then back to PHP was rather complex
and clunky. Implementing a relatively simple feature like favourites proved to be much more
complex to achieve than I expected. On the flip side, formatting using the Bootstrap library
proved to be relatively simple and I was able to write some rather complex queries in SQL
that did what I needed them to do.
In addition to learning and practicing my coding skills a really useful aspect of the project has
been to be able to present potential users with an advanced working prototype. People who I
have spoken to before, and who were enthusiastic about the concept of the site, were able to
give much more specific feedback about what they liked and disliked.

A key takeaway for me is that leading out with a plethora of randomised questions and
answers - especially when they auto-play - is overwhelming for users. Rather than creating a
video Q&A site with the added bonus that you can contact a provider I now think I should be
creating a more focussed "find-a-provider" site backed up by a video Q&A.

In my new vision for the site each provider must maintain one (or a few) "intro" videos in
order to remain listed. Though these will be recorded through the site they will not have the
spontaneous nature of the other videos as providers will be able to practice them again and
again. In addition to these core videos they will have the option of creating more
spontaneous video content that answers frequently asked questions. Rather than the main
page of each channel being a video answer browser, it will be a provider browser consisting
solely of introductory videos. If a single video is enough for the user to feel that they vibe
with the provider then I will make it easy for them to initiate contact. If they do want to see
more detail then they will have the option to dig deeper.
With this sharpening of focus in mind I will now be asking people for their thoughts on how
"ViewChoose.com" compares to a new alternative brand: "MeetTheProvider.com":

 49

Bibliography
Agarwal, N., 2020. PHP: Get Values of Multiple Checked Checkboxes. [Online]
Available at: https://www.formget.com/php-checkbox/
[Accessed 10 07 2022].

Bootstrap, n.d. Build fast, responsive sites with Bootstrap. [Online]
Available at: https://getbootstrap.com
[Accessed 09 09 2022].
Bootstrap, n.d. Collapse. [Online]
Available at: https://getbootstrap.com/docs/5.2/components/collapse/
[Accessed 15 09 2022].

Bootstrap, n.d. Grid system. [Online]
Available at: https://getbootstrap.com/docs/5.2/layout/grid/
[Accessed 15 09 2022].
Bootstrap, n.d. Navs and tabs. [Online]
Available at: https://getbootstrap.com/docs/5.2/components/navs-tabs/#tabs
[Accessed 11 09 2022].
brapifra, n.d. PHP Server. [Online]
Available at: https://github.com/brapifra/vscode-phpserver
[Accessed 02 07 2022].

CodexWorld, 2017. How to Convert PHP Array to JavaScript Array. [Online]
Available at: https://www.codexworld.com/how-to/convert-php-array-to-javascript-array/
[Accessed 09 08 2022].
com, z. a. z. d., n.d. session_unset. [Online]
Available at: https://www.php.net/manual/en/function.session-unset.php
[Accessed 11 07 2022].

Croppie, n.d. Croppie. [Online]
Available at: http://foliotek.github.io/Croppie/
[Accessed 15 07 2022].
Dey, R., n.d. Live Server. [Online]
Available at: https://github.com/ritwickdey/vscode-live-server
[Accessed 02 07 2022].

Dey, R., n.d. Live Server Web Extension. [Online]
Available at: https://chrome.google.com/webstore/detail/live-server-web-
extension/fiegdmejfepffgpnejdinekhfieaogmj/
[Accessed 02 07 2022].

Dutton, S., 2016. Record audio and video with MediaRecorder. [Online]
Available at: https://developer.chrome.com/blog/mediarecorder/
[Accessed 12 09 2022].
Evans-Lacey, R., 2022. MSc Project Proposal. s.l.:Birkbeck.

Font Awesome, n.d. [Online]
Available at: https://fontawesome.com
[Accessed 15 09 2022].

 50

Google Cloud Client Library, n.d. Google Cloud Storage for PHP. [Online]
Available at: http://googleapis.github.io/google-cloud-php/#/docs/cloud-
storage/v1.28.1/storage/readme
[Accessed 12 09 2022].

Google Cloud, 2022. Make data public. [Online]
Available at: https://cloud.google.com/storage/docs/access-control/making-data-
public#prereq-console
[Accessed 01 09 2022].

Google Cloud, n.d. Delete objects. [Online]
Available at: https://cloud.google.com/storage/docs/deleting-objects#storage-delete-object-
php
[Accessed 12 09 2022].

Google Cloud, n.d. Upload objects. [Online]
Available at: https://cloud.google.com/storage/docs/uploading-objects#prereq-code-samples
[Accessed 12 09 2022].
Google, n.d. Geocoding API. [Online]
Available at: https://developers.google.com/maps/documentation/geocoding/requests-
geocoding
[Accessed 15 07 2022].
Google, n.d. Google Maps Platform. [Online]
Available at: https://developers.google.com/maps
[Accessed 15 07 2022].

Griffith, S., 2018. Capturing and Saving User Audio or Video with JavaScript. [Online]
Available at: https://www.youtube.com/watch?v=K6L38xk2rkk
[Accessed 12 09 2022].
kn000x, 2014. how to display errors on MAMP?. [Online]
Available at: https://stackoverflow.com/questions/21784871/how-to-display-errors-on-mamp
[Accessed 02 07 2022].

Krossing, D., 2018. How To Create A Login System In PHP For Beginners | PHP Tutorial.
[Online]
Available at: https://youtu.be/LC9GaXkdxF8
[Accessed 11 09 2022].

learnWebCoding, 2020. GCP Part6: Setup Google Cloud Storage PHP Library. [Online]
Available at:
https://www.youtube.com/watch?v=6tdNoWqsRqk&ab_channel=learnWebCoding
[Accessed 12 09 2022].

Logos-World, 2017. YouTube Logo. [Online]
Available at: https://logos-world.net/youtube-logo/
[Accessed 08 09 2022].
MAMP, n.d. MAMP - The free web development solution with Apache, Nginx, PHP &
MySQL. [Online]
Available at: https://www.mamp.info/en/mamp/mac/
[Accessed 02 07 2022].

 51

Mewburn, B., n.d. Intelephense. [Online]
Available at: https://github.com/bmewburn/vscode-intelephense
[Accessed 02 07 2022].
Newdevzone, 2022. How to save a PNG image server-side, from a base64 data URI.
[Online]
Available at: https://newdevzone.com/posts/how-to-save-a-png-image-server-side-from-a-
base64-data-uri
[Accessed 12 09 2022].

php, n.d. mail. [Online]
Available at: https://www.php.net/manual/en/function.mail.php
[Accessed 11 09 2022].
php, n.d. password_verify. [Online]
Available at: https://www.php.net/manual/en/function.password-verify.php
[Accessed 11 09 2022].

Smilga, J., 2020. Full React Course 2020 - Learn Fundamentals, Hooks, Context API, React
Router, Custom Hooks. [Online]
Available at: https://www.youtube.com/watch?v=4UZrsTqkcW4&t=26348s
[Accessed 21 06 2022].

Smilga, J., 2021. Node.js / Express Course - Build 4 Projects. [Online]
Available at:
https://www.youtube.com/watch?v=qwfE7fSVaZM&ab_channel=freeCodeCamp.org
[Accessed 30 06 2022].

Smilga, J., 2021. Node.js and Express.js - Full Course. [Online]
Available at:
https://www.youtube.com/watch?v=Oe421EPjeBE&t=24922s&ab_channel=freeCodeCamp.
org
[Accessed 21 06 2022].
Stack Overflow, n.d. [Online]
Available at: https://stackoverflow.com/questions/5098397/how-to-pass-an-array-in-get-in-
php
[Accessed 06 07 2022].
The Medium Well, n.d. Responsive vs Adaptive Design – Which is Best for Mobile Viewing
of Your Website?. [Online]
Available at: https://mediumwell.com/responsive-adaptive-mobile/
[Accessed 09 09 2022].
Traversy, B., 2022. PHP For Beginners | 3+ Hour Crash Course. [Online]
Available at: https://www.youtube.com/watch?v=BUCiSSyIGGU
[Accessed 01 07 2022].

Visual Studio Code, n.d. Visual Studio Code. [Online]
Available at: https://code.visualstudio.com
[Accessed 02 07 2022].
W3 Schools, n.d. PHP MySQL Prepared Statements. [Online]
Available at: https://www.w3schools.com/php/php_mysql_prepared_statements.asp
[Accessed 12 09 2022].

 52

W3 Schools, n.d. XML HttpRequest. [Online]
Available at: https://www.w3schools.com/xml/xml_http.asp
[Accessed 12 09 2022].
Web Accessibility Initiative, 2019. Labeling Controls. [Online]
Available at: https://www.w3.org/WAI/tutorials/forms/labels/
[Accessed 16 07 2022].

West, C., 2017. Get Video Frame As An Image. [Online]
Available at: https://cwestblog.com/2017/05/03/javascript-snippet-get-video-frame-as-an-
image/
[Accessed 12 09 2022].

Wikipedia, n.d. Clean Language. [Online]
Available at: https://en.wikipedia.org/wiki/Clean_language
[Accessed 13 09 2022].
Wikipedia, n.d. SQL Injection. [Online]
Available at: https://en.wikipedia.org/wiki/SQL_injection
[Accessed 12 09 2022].

 53

Appendices
Appendix 1: User acceptance testing meeting notes
JL, potential user, 7 August 2022
Has had lots of experience looking for therapists and thought the videos would really help her
get to know someone.

Didn't really vibe with the name "ViewChoose" but couldn't think of anything that she would
prefer.

Didn't like the name "Posters" but couldn't think of anything better that would apply to all
channels.

Optional location for user sign-up so we can use proximity searching.
Could include "Languages spoken" in poster profile.

How to handle USA based therapists whose licences prevent them from practicing outside of
their state?

All the buttons showed once all the questions were answered.

DT, psychotherapist, 26 August 2022
Liked the "YouChoose" logo on the index page but thought the banner was rather large.
Thought the use of the word "vibe" was rather casual but fitted with the informal theme.

Thought the buttons and explanation were too small in relation to the banner.
Thought "Like the posters who speak to you most" should be re-worded to "Like your
favourites".
Thought the "Become a poster" button was too buried as he couldn't find it on the index page.

Thought the process of signing up as a user then becoming a poster could be more clearly
signposted.

When trying to sign up put his email and a password into the boxes intended for logging in.
The main video on the watch screen was so large that the buttons underneath were not
visible.
The videos in the list were not clickable so you couldn't jump to one later in the list that looks
interesting.
Liked that when recording it wasn't a mirror image but rather how someone would see you in
real life.
Thought therapists might be reluctant to sit down and create videos.

VP, potential client, 28 August 2022
Wondered if, rather than having an index page, there could be tabs for each channel across
the top of the screen?

 54

Found the transition between videos when they were playing somewhat jarring and suggested
a pause between them. Perhaps giving the viewer the option to watch another one rather than
autoplaying from the start.
When the keyword "thing" was used no videos were retrieved and the places where the
videos would have been had ugly placeholders.
Was not clear from the icons what the like and profile buttons do. Is it possible to have a
description when the mouse hovers over them? Maybe have a button like: "Go to Vlad's
profile" at the top or the other buttons further over to the sides of the screen?

Was not clear on the sign-up page if all fields are "required" and they could be labelled as
such.

Would like to see how many "likes" each video has.
Would prefer the menu item "answer questions" to say "record videos".

Found the video preview when recording videos is too big.
Thought it would be nicer to offer people a choice of three thumbnails (from the beginning,
middle, and end) rather than having them choose one by reviewing the video.
When recording thought it would be nice to have a number showing how many questions are
left to be answered.
When all videos have been answered the screen got messy - including a "review" button that
does not get used.
When selecting a "Tommy" thumbnail from the index screen no answers were found.

Profile mail not sending to the correct address - instead it always goes to
"richard@psychicplumbing.com".

Poster email did not change when database was updated as it is stored in a session variable.
Maybe it is too confusing to let users have different emails for their user profile and their
poster profile?

TP, Mindfulness Coach, 2 September 2022
Liked the initial YouChoose banner in red and white and said they were the best colours for
marketing.
Was initially against the wording of finding someone to "vibe with" but later decided she
liked it.
Wondered why the site was centred around questions rather than allowing the user to search
for the type of practitioner they are looking for who is local to them. Thought the answers to
questions told her nothing about who they are but did like that the profiles had questions at
the bottom.
Would it be possible to have a more traditional list of profiles and, maybe, filter for them in
the same way as for videos?
Noticed when not signed in that clicking the profile button under the video takes you to the
profile but that the profile then had error messages on it.
Would definitely like to filter by speciality. Noticed that "Mindfulness Coach" was not on
the list of specialities.

 55

Found the immediate recording was off-putting and would prefer some kind of intermediate
page with tips on recording a good video.

Thought that tabs across the top would be good.

AS - Meditation teacher, 7 September 2022
Thought the ViewChoose logo looked spooky and haunted. Thought the brand name
sounded like a video site rather than somewhere to find a professional. Would have preferred
to see the faces of friendly practitioners and a warmer colour pallet.

Thought "posters" sounded like printed paper and preferred the word "providers".
Liked the progression of steps on the welcome page but thought it would be clearer as a
process if there were arrows in-between each icon. Thought this process could be more
clearly signposted throughout the site.

Noticed that there was a "header info" error when signing in on the sign-up page. Thought
the sign-up page should ask for location information so the site only shows providers close to
you.
Didn't like that the videos auto played - at least there should be some kind of count down.
Thought that it would be good to display some basic profile information with the video as it
was playing and to include calls to action after every video: "Book now", "Watch more
videos about ...", "Watch more videos from ...".
Thought the keyword field should link words like "anxious" with "anxiety".

Thought the categories of questions were confusing. Would be better if it was phrased
"Show me videos about..."

Didn't like having the provider's name on the question, wants the site to talk to him.
Found it difficult to distinguish between the formatting for a liked and unliked video.

Thought there should be a profile picture at the top of the profile page. Would prefer if the
contact form didn't like the phrase "work together" as it wouldn't be appropriate for other
channels. Thought the map should be smaller and hours of availability should be included.
Thought the gap under the map was too small. Thought a number of smaller boxes would be
less intimidating than a single box for the contact form. Once contact has been made thought
it would be nice to play a short video or at least move the "sent" message to the top.

Thought there should be 3 types of provision: online, you come to me (with a point location),
and I come to you (with an area of operation).

Questioned the rationale of providing a repository of video answers with the added bonus of
being able to contact a provider - thought YouTube already did that. Instead, thought it
would be better to be closer to a standard "find a" website but with videos. Have a core set of
between 4 and 7 introductory videos that were necessary for each video profile and ask the
providers to contribute to a wider Q&A as the added bonus.

